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A B S T R A C T  

In this  paper ,  we get a necessary and sufficient condit ion on the  weights 

(~, v) for the Poisson integral operator to be bounded from L~(R", v(z)dz) 
to weak-L#(R~.+l,dg), where 4) is an N-function satisfying the 
A2-condition. We also find a necessary and sufficient condition on the 
weights (p, v) for the Poisson integral operator to be bounded from 
L# (R", v(z)dz) to L# (R~. +1 , d~) under some additional condition. 

1. I n t r o d u c t i o n  

Let P denote  the  following Poisson integral  operator :  

P(/)(x, t)  = [ /(y)p(~ - y,t)dy (~ e R", t > o) 
JR Is 

where 
Cnt p(x, t) : =  

(izl = + t2)(.§ 

Let (I, be  an N-func t ion  on [0, or) ,  i.e., r  = f~ ~o(t)dt where ~ :  [0, ~ )  ~ R 1 is 

continuous f rom the right,  non-decreasing on [0, or) ,  qo(s) > 0 for s > 0, q0(0) = 0 

and  q o ( + ~ )  = + ~ .  In this paper ,  we shall consider the following two questions: 

Q - l :  For a given nonnegative measure # on R~ +1 and  a weight v on R", what 

are the conditions on (# ,v )  for P to be bounded f rom L ~ ( R " , v ( z ) d z )  to weak- 
L @ ( R ~ §  d , ) .  ? 
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Q-2: What are the conditions on (#, v) for P to be bounded from Le (R", v(z)dz) 

to wo(R~.+~,d~,)r 

This kind of problem was originally studied by Carleson [1] (for v = 1, ~(t) = 

t r, 1 < p < +co), Fefferman and Stein [2] (for r = if, 1 < p < +co) and 

Muckenhoupt [O] (for #(t)  = t", 1 < p < +co,  dr(x,  t) = u(x)dx | d60(t) where 
~0(t) denotes the Dirac measure at 0). The problems were proposed and studied 

in such a unified form in Ruiz [7] and Ruiz-Torrea [8]. 

For the above questions, it is enough to consider the following maximal func- 

tion .M instead of P since .M(f) and P ( f )  are comparable with each other for 

nonnegative f .  A,4 is defined by 

.h4(f)(x, t) = sup IQI -~ f lf(y)ldy 
cubeQ~z and / (Q)>t  JQ 

where I(Q) denotes the side length of Q. In this paper, "cube" always means the 

cubes with sides parallel to the coordinate axes. 

For Q-l, our result is as follows. 

THEOREM 1: For an N-function ,~ satisfying the A2-condition, a nonnegative 

measure p on R~. +1 and a weight !: on R ~, the following inequaIity holds: 

(1) .({(z,t): .M(f)(z,t) > v}) -< 0 - ~  . r  (V,7 > o) 

if and only if(~,,~,) e A +, i.e. 

. u .  
(2) cubeQ and t>o ~ " = q 

where ~) := Q x (0,/(Q)], p(Q,) := f6 d~,, (g)Q := IQI -~ fQ g(x)d~ and 

(3) r  := sup{ , :  ~(~) < t}. 

The A 2-condition means that 

(3') r < c , r  (t > o). 

Furthermore, C -1 < C1/C2 < C,,,~ for the minimal choice of CI. 
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Remark A: T h e  ease w h e n  r  = tp, 1 < p < co. For v - 1, the equiv- 

alence of (1) and (2) was shown by Carleson [1] and (2) is just the so-called 

Carleson condition, i.e.,/~(Q) _< C~,[QI. And Fefferman and Stein's condition [2] 

sup#(0)  _< C~,,,,v(z) a.e. z �9 R" 
zEQ 

is stronger than (2) because the last inequality means 

inf ~(x) < r~(~((r -~. zEQ ~v 

The general condition on (p, v) for (1) was found by Ruiz [7], i.e. 

fQv(x) -p /'dx) p/" ~(Q)/IQI < oo. 2  +lQI - ' (  , , _ 

(2') 

| 

Remark B: T h e  ease w h e n  dp(x, t)  = u (x)dx  | d60(t). For (I)(t) = t p, 1 < 
p < +oo, the equivalence was proved by Mucken_houpt [6] and (2) is just the 

Ap-condition, i.e. 

t ~ /Q ~(~)-~'/~dr < oo. (4) sup (-i-~ [ u(x)dx) 1 
o . b .  Q 

For general ~, if ~ and its complementary function 

I' (51 +(t) := r 

satisfy (3') where r is defined by (3), the equivalence of (1) and (2) was shown 

by Gallardo, and (2) is equivalent to the Ar (see [3,5]). II 

For Q-2, our result is partial. We first introduce some notation. Let 

A'(f)(x,  t) = sup (Ill)Q, 
dyadic cube Q~z 

N.(f)(x) = sup (I/I),,,Q, 
dyadic cubeQDx 

(g)a,Q = [ g(y)a(y)dy/a(O), Jq 
2V r  = a(x)Na(f/a)(x), 

~-~(f)(~)  = f ( ~  - y) .  

Then we have 
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THEOREM 2: Suppose ~ is an N-function satisfying (3). h e there is a weight a 

on R" such that 

(6) sup [ r _< c~ ,~[ ~([fl)v(x)dx, 
yER" JR" 

then ~ is L,(R",~(.)dx) ~ L,(R~+;,d,) bounded, i.e. 

(7) J~;+, r t) < C4 ~,, r 
if and only ff 

(8) /~ r _< c5/o r (v. > 0). 

Further, C -1 < C4/C5 < C,,r 

l 

Remarks: (C) It is easy to see that r~- l (N~o(ry(f)))(z)  < a(z)Mo(f/~)(x) for 

any y G R", where Mo is the Hardy-Littlewood maximal function operator with 

respect to the measure a(x)dx. 
(D) If y 6 Ar then (6) is true for a = 1 by [5]. Thus we have 

COROLLARY 3: If v 6 Ar then .M is bounded from Lr v(x)dx) to 

Lr i/F#(Q) < Csv(Q), where ~ and g2 satisfy (3). 

(E) If C;'  < r < Cr then (6) is true for any weight v and a := 

r  where r is defined by (3). Actually, No is bounded from L~176 ", a(x)dx) 
to itself and from Ll(R",a(z)dx) to weak-Ll(Rn, a(x)dx) for any weight a. So, 

by Theorem 2.17 of [3], No is L.(Rn,a(z)dx)-bounded. Thus, by Lemma 1 of 

the next section, for a := r we have 

<_ c.. <_ c.. <_ c.. 

Similar estimates hold for the operator r~lfi[~or~. So, we have 

COROLLARY 4: /s C~ -I < r < Cr 0 and its complementary 

function q satisfy (3'), then (7) holds itl' (S) holds. 

(F) In particular, Corollary 4 holds for r  = if, 1 < p < +oo. In this case, 

we get Sawyer's result [9] when d#(x,t) = u(x)dx | d6o(t) and Ruiz-Torrea's 

result [8] for general/~. I 
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2. P r o o f  of  T h e o r e m  2 

Theorem 2 will follow from 

THEOREM 2t: I f  there'is a weight a 011 R" such that  

(69 

then 

(7') 

he and only ff 

y++, r < C, s '~(IfDv(z)dz 

197 

and thus 

~o(~(t)) _< Iim+~o(2(r - a)) _< Cr lira ~o(r - a)  < C~t. | 
a-*O+ 

Now, "(7)=*(8)" is obvious if we take f = ?eXQ. To prove "(8') =} (T)", we 

need 

? / -  

JQ Jc Q 

where ~ is an N-function satisfying (3'), and 1 < CT/Cs <_ Cr 

Actually, a "translation" discussion shows that, under the conditions of Theo- 

rem 2 (i.e. (6) and (7)), the following inequality holds: 

sup [ ,r((,-;'x~-~)(:))(~,Od.(~,t) < c, [ r (9) 
UER" JR~+* JR 

Thus, by Lemma 2 of [8] and Jensen's inequality, we can easily get (8) from (9). 

Now, we shall prove Theorem 2'. The idea is essentiaUy from [4,9]. At first, 

we have 

LEMMA h For any N-function ~, t <_ 7~(r and ~(t) S t~(t). If  ~ satis~es 

(3% then ~(r _< C~t and r >_ t~(t)/C~. 

Proof : The first part easily follows from the right-hand continuity and mono- 

tonicity of ~. Now, if �9 satisfies (3'), we have 

�9 (t) _> cg~(~.t) _> c~ -~ ~(~)~ _> cg~t~(t), 
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LEMMA 2: (8') implies the following inequality: 

(8") f_ @(Af(tlaXG)(x,t))dp(x,t) < Ca/_ @(tla)v(x)dx (VT/> 0) 
J G  d J G  

where Od := U O. 
dy&dle Q C G  

Proof : Consider Af(r)(f) defined as Af(f) but with the additional restriction 

l(Q) _< R, R > 0. Let 

�9 A, r = {(}: (,7(,),~ > 2', z(Q) __ R, O c a},  

and choose a maximal subfamily {Q,,j}j from .A~ (it is possible because 

sup{/(Q) : Q E A~} < R < +c~). Then it is easy to see that 

UQ,,~ = U Q = {(~,t) : ~('~(~,7)(~,t) > 2', x �9 G} 

and 

Now, put 

Gdn(G x [0,R])= U(~,,s. 
k,j 

Ek,S = ~)k,i - [.]Qk+~,j, 
k,j 

{(~i}i to be a maximal subfamily of {Q,k,i}k,j. Then 

~, ~(~r = fa,oCa• ~(~r176 

<- E ~(2t+ZlP(E',J) <- Cr Z E @(0/~)O',s )#(E',j) 
k , j  i Q~,jCQ~ 

i Qh,jCQi k,j 

JU O, Ja 
i 

Finally, letting R ~ +c~, we get (8'1). 

Now, we shall prove "(8') =~ (7')". Similarly to the proof of Lemma 2, let 

~ff = {~): ( l /I)q > 2 k, l (0 )  < R}, 
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{(~kj}j be a maximal subfamily of B~, 

F~,~ = 0~,~ - U Q ~ + ' , ~ ,  
J 

r ( ~ )  = { ( k , j )  : ( I f l / ~ ) . , q . .  > ~}, 

a(~)= U O,,i; 
(k,/)er(~) 

then, 

R;+' = U r = {(x e R": 
(k,j)  (t,i) er(~) 

where N~ (s) is defined similarly as N,, but with restriction l(Q) <_ R. Therefore, 
w e  have 

fn~. +, r -< E ~(2~+')P(Fk,J) -< C, E ~((lfJ)Q*,~ )~u(FkJ) 
(k,j) (k,j) 

___ C, ~ ,I,((~)Q,,~ (Ifl/a)~,o., j)/~(FkJ) 
(k,j)  

_< C,} E E ff((a)QkJ 2k+')p(Fk,i) 
i (k,j)er(2')-F(2'+') 

<_ C~ E E IF, o(2iN'(n)(aXch" ))ap(x't) 
i (kj)er(2,) ,i 

C. ~i /~)'~ e~(2i'/~f(R)(~ 

_~ C~ ~ / a ( 2 i )  O(2 ia)v(x)dx (by (8")) 

"~ C@ j~Rn ( E )~2(2i~)v(x)dx (by(S")) 
i: 2~<_N~S>(f/~) 

< C~ f~. O(aN(R)(f/a))v(z)dx 

because, by Lemma 1, 

E ~(210") ~ C~ E 2i~176 
i_<~ i_<a 

-< C~2/crq~ 2i -< C~2aaqo(2~a) <- Cv~(2aa)" 
i<o 

Combining the above with (6'), we get (7'). | 
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3. P r o o f  o f  T h e o r e m  1 

Proof of '(1) =i. (2)": Taking f = xo~b(l)  arid llO = (f)O, we get 

.M(I)(z,  t) > (I)Q for any (z, t) e I~ 

and 

Isr. J. Math. 

f 
p({(z , t )  : .M(f ) (z , t )  >rlO}) < (C1/~07O))/o'~(Ifl)v(=)d=, 

i.e. 

~(O)/IOl  -< Cl(r 

by Lemma 1. II 

Proof of "(2) =i> (1)": At first, we claim that  (9) implies 

(10) t,(4))/IQI <_ c2c~(~(Ifl)v)q/~((Ifl)q). 
Taking (10) for granted, we can prove (1) easily. Let .M (R) be the maximal 

operator defined as . M ,  but with restriction l(Q) < R in the defining identity of 

.,t,4: Put  

a~ = { (z , t )  ~ R,~+': ,U(R)( / ) (z , t )  > ~}, 

a'~ = {= ~ R - :  ~4~R)(/)(=,0)  > ~}, 

tR,.(=) = sup{t :  (=,t) e a .)  (<_ R for any = ~ a'.) ,  

then {Q~,R,~}z~n~ is a covering of ~ ,  where Q~,R,~ is a cube containing z, 

having side length tR,,~(z) and satisfying (f)Q.,a,, > r#. Because of the finiteness 

of sup{/(Q=,R,n) : z E f/L}, by a Besicovitch-type covering lemma, we earl choose 

a subfamily of {Qj}j  such that  

a'. and Exq  -< c.xUo . 
J J J 

Then, obviously, ( f )e j  > 7? and {0S}i is a covering of f13-~ because for any 

(a, t)  E s  a E some Qj, say, O.y,R,., and ti,R,. > ti,it,~.. >_ t for, otherwise, 

3Q.,n,3-.  3 Ql,n, .  and thus 

J J J 

<_ (c2c./<~(,D) y~ .Q/- <~(Ifl)v(=)d~ <_ (CzC.,~/i(,D) s i(Ifl)v(=)d=. 
j i " 
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Finally, we prove our "claim", i.e. (2) implies (10). Let 

I]1 ~,. = i~{~  : [ ~(I.rll,~)w(x)d~ <_ 0(1)}. 
J R  

It is weU-known that 

I fR. g(~)f(z)dz[ <_ I ]1 ~,.I gl ,~,,,,  

where ~ is the complementary function of @. Now, by Lemma 1 

s o  

if 

(11) , >_ c~-1(11(,~,((~))~(c210.11(,7o,~,(0.)))1QII,7 <_ 11c~. 

On the other hand, by Lemma 1, (2) implies that if 

o > c .1Ol~-X(1/~(Q))  

where @-1 is the inverse function of ~, then 

1/~,(0) _< ,~(c~,7/(c~10,1)) 

which means 

C21QIl(,la~(O.)) <_ ~(IQII(,Tc.~)C~) (by Lemma 1). 

Again, by Lemma 1, the last inequality implies (11). Thus 

I XO(c,v)-ll ~ , , ,  < c~101~-1(1/~(~))) 

and 

(I/I) -< l Yxql ~,M xq(~v)- ' l  ~,.~ 

< C#l@l~- ' (x/~(c)))= c~IQI~-I(1/(~(0))) 

for ~ = ( fo  O(Ifl)v(x)dx)-l. Therefore, having (39, we get 

(O(I]l)~)Q/~((Ifl)q) >- ( O(I]l)")d'~( Co O-'  ( ( ~(Ifl)v)Q lO, I/ ~'( O, ) 

>- C~('~(lfl)~ = Ce~(Q)/tOI. 

201 

(by (2)) 
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F/ha/Remark:  (G) It would be interesting to find out a necessary and sufficient 

condition on (#, v) for the validity of (7) without the restrictive condition (6). 
| 
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